Patent 5,071,651

Patent Title contains
All words Any words
Inventor contains
All words Any words


United States Patent 5,071,651
Sabara ,   et al. December 10, 1991

Rotavirus nucleocapsid protein VP6 as a carrier in vaccine compositions


Immunological carrier complexes are provided utilizing the VP6 polypeptide from rotavirus as the carrier molecule. Also provided are methods of binding epitope-bearing molecules (e.g., haptens) to the VP6 carrier molecule through binding peptides. The VP6 carrier can be a VP6 monomer, oligomer, or a particle containing of VP6 oligomers.

Inventors: Sabara; Marta I. (Saskatoon, CA), Frenchick; Patrick J. (Saskatoon, CA), Mullin-Ready; Kerry F. (Saskatoon, CA)
Assignee: University of Saskatchewan (Saskatoon, CA)
Family ID: 26785281
Appl. No.: 07/489,790
Filed: March 5, 1990

Related U.S. Patent Documents

Application NumberFiling DatePatent NumberIssue Date
92120Sep 2, 1987
903222Sep 3, 1986

Current U.S. Class: 424/186.1 ; 424/196.11; 424/215.1; 514/20.9; 514/21.4; 514/3.7; 530/324; 530/402; 530/403; 530/807; 530/816
Current CPC Class: A61K 39/385 (20130101); A61K 47/48776 (20130101); C07K 14/005 (20130101); A61K 2039/6075 (20130101); A61K 2039/627 (20130101); C12N 2720/12222 (20130101); Y10S 530/807 (20130101); Y10S 530/816 (20130101)
Current International Class: A61K 39/385 (20060101); A61K 47/48 (20060101); C07K 14/005 (20060101); C07K 14/14 (20060101); A61K 039/385 (); C07K 017/00 ()
Field of Search: ;424/89 ;530/403,402,816,807,324 ;514/8

References Cited [Referenced By]

U.S. Patent Documents
4190645 February 1980 Almeida
4341870 June 1982 Wyatt et al.
4356170 October 1982 Jennings et al.
4459286 July 1984 Hilleman et al.
4496538 January 1985 Gordon
4571385 February 1986 Greenberg et al.
4578269 March 1986 Morein
4624850 November 1986 Albert et al.
4636385 January 1987 Plotkin et al.
4673574 June 1987 Anderson
4695624 September 1987 Marburg et al.
4711779 December 1987 Porro et al.
4722840 February 1988 Valenzuela et al.
4761283 August 1988 Anderson
4808700 February 1989 Anderson et al.
Foreign Patent Documents
0235754 Sep 1987 EP

Other References

Bridger et al., S. Gen. Virol. (1976), vol. 31, pp. 245-250. .
Rodger et al., Journal of Virology, (1977), pp. 91-98. .
Tiollais et al., Nature, vol. 317, (1985), pp. 489-495. .
Vogel et al., Cellular Immunology, vol. 107, pp. 40-51, (1987). .
Schutze et al., The Journal of Immunology, (1985), vol. 135, No. 4, p. 2319. .
Frenchick et al., Applied Virology Research, vol. 1, (1988), pp. 141-151. .
Haynes et al., Biotechnology, vol. 4, (1986), pp. 637-641. .
Sabara et al., Journal of Virology (1985), pp. 58-66. .
Arumugham et al., Arch. Virol. (1989), vol. 105, pp. 65-79. .
Wengler, Arch. Virol. (1987), vol. 94, pp. 1-14. .
Odenwald et al., Jrnl. of Virology, (1986), vol. 57, No. 3, pp. 922-932. .
Rombaut et al., Virology, vol. 153, (1986), pp. 137-144. .
Ready et al., Virology, vol. 157, (1987), pp. 189-198. .
Thouless, J. Gen. Virology, (1979), pp. 187-197. .
Matsumo et al., J. Gen. Virology, (1979), vol. 43, pp. 309-316. .
Nooo et al., J. Gen. Virol., (1981), vol. 56, pp. 325-335. .
Kimura et al., Arch. Virol., (1987), vol. 92, pp. 165-174. .
Bican et al., Journal of Virology, (1982), vol. 43, No. 3, pp. 1113-1117. .
Boege et al., Journal of Virology, (1986), vol. 57, No. 1, pp. 275-284. .
Hanison et al., Carbohydrate Res. (1988), 178, pp. 29-47. .
Dick et al., Contributions to Microbiology and Immunology, 1989, vol. 10, pp. 48-114. .
Longenecker et al., JNCI, vol. 76, No. 9, (3/87). .
Anderson et al., J. Immunology, (1989), 142(7), pp. 2464-2468. .
Zigkerman et al., J. Immunol. Methods, (1988), 106(1), pp. 101-107. .
Seppala et al., Scand. J. Immunol., (1988), pp. 471-479. .
Schwartz et al., (1977), vol. 181, pp. 542-549, Archives of Biochemistry and Biophysics. .
Chem. Abstracts, vol. 101, 1984, 144949t. .
Chem. Abs., vol. 108, 162722n, Smith. .
Kapikian et al., (1985) Virology, pp. 863-906 (B. N. Fields et al., eds.). .
Bastardo et al., (1981) Infect. & Immun. 34:641-647. .
Estes et al., (1984) Nucleic Acids Res. 12:1875-1887. .
Estes et al., (1987) J. Virol. 61:1488-1494. .
Summers et al., (1987) A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, pp. 5-7, 52. .
St. Angelo et al., (1987), J. Virol. 61:361-365. .
Valenzuela et al., (1985) Chemical Abstracts 102:216278u. .
Gorziglia et al., (1985) Chemical Abstracts 103:156990d. .
Valenzuela et al., (1985) Chemical Abstracts 104:223449v. .
Pett et al., (1975) Chemical Abstracts 82:135382q. .
Killen et al., (1982) Chemical Abstracts 97:196630a. .
Gerald et al., (1984) Chemical Abstracts 101:144949t. .
Taniguchi et al., (1986) Chemical Abstracts 104:107585n. .
Sandino et al., (1986) Chemical Abstracts 105:205956z..

Primary Examiner: Doll; John
Assistant Examiner: Wessendorf; T. D.
Attorney, Agent or Firm: Irell & Manella

Parent Case Text


This application is a continuation of application Ser. No. 07/092,120, filed 2 September 1987, now abandoned, which is a continuation-in-part of Serial No. 903,222, filed 3 September 1986 now abandoned.

We claim:

1. An immunological carrier complex that raises an immunological response in a mammal to an epitope said complex comprising:

an epitope-bearing molecule containing an epitope-bearing moiety selected from the group consisting of polypeptides and carbohydrates coupled to a carrier protein comprising the amino acid sequence of a rotavirus VP6 inner capsid protein.

2. The complex of claim 1 wherein said epitope-bearing moiety is a polypeptide.

3. The complex of claim 1 wherein said carrier protein is in the form of a particle.

4. The complex of claim 3 wherein said particle is a spherical particle.

5. The complex of claim 3 wherein said particle is a tubular particle.

6. The complex of claim 1 wherein said coupling of said carrier protein and said epitope-bearing molecule is through a protein-protein interaction.

7. The complex of claim 2 wherein said coupling of said carrier protein and said epitope-bearing molecule is through a protein-protein interaction.

8. The complex of claim 3 wherein said coupling of said carrier protein and said epitope-bearing molecule is through a protein-protein interaction.

9. The complex of claim 6 wherein said protein-protein interaction is between said carrier protein and a portion of said epitope-bearing molecule having an amino acid sequence selected from the group consisting of:

(a) Cys-Asp-Gly-Lys-Tyr-Phe-Ala-Tyr-Lys-Val-Glu-Thr-Ile-Leu-Lys-Arg-Phe-His-Se r-Met-Tyr-Gly; and

(b) Cys-Asn-Ile-Ala-Pro-Ala-Ser-Ile-Val-Ser-Arg-Asn-Ile-Val-Tyr-Thr-Arg-Ala-Gl n-Pro-Asn-Gln-Asp-Ile-Ala.

10. The complex of claim 7 wherein said protein-protein interaction is between said carrier protein and a portion of said epitope-bearing molecule having an amino acid sequence selected from the group consisting of:

(a) Cys-Asp-Gly-Lys-Tyr-Phe-Ala-Tyr-Lys-Val-Glu-Thr-Ile-Leu-Lys-Arg-Phe-His-Se r-Met-Tyr-Gly; and

(b) Cys-Asn-Ile-Ala-Pro-Ala-Ser-Ile-Val-Ser-Arg-Asn-Ile-Val-Tyr-Thr-Arg-Ala-Gl n-Pro-Asn-Gln-Asp-Ile-Ala.

11. The complex of claim 8 wherein said protein-protein interaction is between said carrier protein and a portion of said epitope-bearing molecule having an amino acid sequence selected from the group consisting of:

(a) Cys-Asp-Gly-Lys-Tyr-Phe-Ala-Tyr-Lys-Val-Glu-Thr-Ile-Leu-Lys-Arg-Phe-His-Se r-Met-Tyr-Gly; and

(b) Cys-Asn-Ile-Ala-Pro-Ala-Ser-Ile-Val-Ser-Arg-Asn-Ile-Val-Tyr-Thr-Arg-Ala-Gl n-Pro-Asn-Gln-Asp-Ile-Ala.

12. In a vaccine composition wherein the epitope of interest is on a polypeptide bound to a carrier protein, the improvement comprising using a protein comprising the amino acid sequence of rotavirus VP6 inner capsid protein as said carrier protein.

13. The vaccine composition of claim 12 wherein said polypeptide bearing the epitope of interest is bound to said carrier protein through a protein-protein interaction between said carrier protein and a binding amino acid sequence in said polypeptide.

14. A composition according to claim 13 wherein said binding amino acid sequence is selected from the group consisting of:

(a) Cys-Asp-Gly-Lys-Tyr-Phe-Ala-Tyr-Lys-Val-Glu-Thr-Ile-Leu-Lys-Arg-Phe-His-Se r-Met-Tyr-Gly; and

(b) Cys-Asn-Ile-Ala-Pro-Ala-Ser-Ile-Val-Ser-Arg-Asn-Ile-Val-Tyr-Thr-Arg-Ala-Gl n-Pro-Asn-Gln-Asp-Ile-Ala.

15. A method to vaccinate a mammal comprising:

administering to said mammal the complex of claim 1 in a manner that causes an immunological response to said epitope.

16. A method to vaccinate a mammal comprising:

Administering to said mammal the composition of claim 12 in a manner that causes an immunological response to said epitope.


The present invention relates to immunological carriers and vaccine compositions. More particularly, the present invention relates to the use of rotavirus inner capsid protein VP6 as an immunologic carrier, as well as its use in a vaccine composition for use in stimulating immunity against rotavirus infections.


Rotavirus is a genus of the family Reoviridae. This genus of viruses is widely recognized as the major cause of gastroenteritis of infants and young children in most areas of the world. In the lesser developed countries diarrheal diseases such as gastroenteritis constitute a major cause of mortality among infants and young children. For a general background on rotaviruses, see Kapikian et al., in Virology, pp. 863-906 (B.N. Fields et al., eds., 1985), the disclosure of which is incorporated herein by reference.

Immunity to rotavirus infections and illness has been poorly understood. Animal studies, however, have been conducted directed to the relative importance of systemic and local immunity. Bridger et al. (1981) Infect. Immun. 31:906-910; Lecce et al. (1982) J. Clin. Microbiol. 16:715-723; Little et al. (1982) Infect. Immun. 38:755-763. For example, it has been observed that calves develop a diarrheal illness despite the presence of serum rotavirus antibody at the time of infection. Calves which are fed colostrum-containing rotavirus antibodies immediately before and after infection with rotavirus, however, do not develop diarrhea within the normal incubation period. See, e.g., Bridger et al. (1975) Br. Vet. J. 131:528-535; Woode et al. (1975) Vet. Rec. 97:148-149. Similar results have been achieved with newborn lambs, who developed resistance when fed colostrum or serum containing rotavirus antibodies for several days during which period the lambs were challenged with rotavirus. Snodgrass et al. (1976) Arch. Virol. 52:201-205.

In studies of the effect of administering rotavirus to humans, it was found that a preexisting high titer of serum neutralizing antibodies to rotavirus correlated with resistance to diarrheal illness. Kapikian et al. (1983) Dev. Biol. Standard 53:209-218; Kapikian et al. (1983) J. Infect. Dis. 147:95-106. In infants and children, however, the presence of serum antibody to rotavirus has not been associated with resistance to infection or illness. See, e.g., Black et al. (1982) J. Infect. Dis. 145:483-489; Gurwith et al. (1981) J. Infect. Dis. 144:218-224; McLean et al. (1981) J. Clin. Microbiol. 13:22-29.

Most current efforts in experimental rotavirus immunoprophylaxis are aimed at the development of live attenuated virus vaccines. Attenuation, however, is usually associated with a decrease in the level of viral replication in the target organ; i.e., the epithelium of the small intestine. Attenuated mutants of other mucosal viruses, however, have exhibited a diminished immune response correlated with the decrease in replication. Since the protective efficacy of wild-type virus infection is marginal, it may be impossible to achieve the desired immunoprophylaxis with a mutant exhibit decreased replication. Two bovine rotaviruses, NCDV and the UK strain, have been produced in attenuated form and evaluated as vaccines in humans. Vesikari et al. (1983) Lancet 2:807-811; Vesikari et al. (1984) Lancet 1:977-981; Wyatt et al. (1984) in Conference Proceedings: Control and Eradication of Infectious Diseases in Latin America

Another approach to the development of an attenuated rotavirus vaccine is based on the ability of rotaviruses to undergo gene reassortment during coinfection. A number of "hybrid" strains have been isolated from cultures coinfected with a wild-type animal rotavirus and a human rotavirus. Strains are selected which receive the gene coding for the outer nuclear capsid protein VP7, the remaining genes being derived from the animal rotavirus parent. See, e.g., Immunogenicity, pp. 319-327 (Chanock & Lerner, eds., 1984)

Still another approach to immunization has been the suggestion of using recombinantly produced VP7 polypeptide in a vaccine. See, e.g., Virology, p. 892 (B.N. Fields et al., eds., 1985) It has been further suggested, however, that recombinant VP7 is unlikely to produce an effective primary local intestinal immune response. Id. at 893. The VP7 gene from several strains of rotavirus has been cloned and full-length or near full-length cDNA has been attained. See, e.g., Arias et al. (1984) J. Virol 50:657-661; Both et al. (1983) Proc. Natl Acad. Sci. USA 80:3091-3095; Elleman et al. (1983) Nucleic Acid Res. 11:4689-4701; Flores et al. in Modern Approached to Vaccines; Molecular and Chemical Basis of Virus Virulence and Immunogenicity, pp. 159-164 (R.M. Chanock et al., eds., 1983).

It has also been suggested that synthetic peptides corresponding to major anogenic sites of VP7 may be useful in immunization. Virology, supra, p. 893. In addition, passive immunization with rotavirus antibodies has been shown to be effective in preventing rotavirus illness in animals and in infants and young children. Id.

The most abundant structural protein in rotavirus particles is the approximate 45 K MW nucleocapsid or inner capsid protein coded for by gene 6, known in the art as virus protein 6 or VP6. Although not an integral component of the outer capsid, it is an important viral antigen. It has been identified as the subgroup antigen by using several techniques including complement fixation, ELISA, immunoadherence agglutination assay, and specific monoclonal antibodies. VP6 is also described as the common rotavirus group antigen since some monoclonal antibodies against it will react with all rotaviruses, and polyclonal serum raised against a single rotavirus type can detect most other rotavirus strains. Aside from its antigenic properties, VP6 is very immunogenic and several investigators have found that polyclonal serum raised to this protein has neutralizing ability. Bastardo et al. (1981) Infect. & Immun. 34:641-647.

The gene encoding VP6 has been cloned. See, e.g., Estes et al. (1984) Nucleic Acids Res. 12:1875-1887. VP6 has also been produced by recombinant methods Estes et al. (1987) J. Virol. 61:1488-1494.

Vaccine compositions for rotavirus disease comprised of peptides from VP7, VP6 and VP3 have also been proposed. See commonly owned patent applications U.S. Ser. No. 903,325 (filed 3 September 1986); Canadian Ser. No. 526,116 (filed 23 December 1986); Australian Ser. No. 66987/86 (filed 24 December 1986); Chinese Ser. No 86108975 (filed 25 December 1986); EPO Ser. No. 86 117 981.0 (23 December 1986); and Japanese Ser. No. 61-308945 (filed 26 December 1986), the disclosures of which are incorporated by reference herein.

Several immunologic carriers are known in the art, including, but not limited to, keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA), ovalbumin (OVA), beta-galactosidase (B-GAL), penicillinase, poly-DL-alanyl-poly-L-lysine, and poly-L-lysine. The coupling of the desired hapten or other epitope-bearing molecule to such carriers often requires elaborate chemical procedures. Such procedures are expensive and may have a deleterious effect on the final complex comprised of the carrier and epitope-bearing molecule. Thus, there is a need in the art for improved immunological carriers to which epitope-bearing molecules can be attached readily, but which are also at least as effective as prior art immunologic carriers.


The present invention is based on the discovery that VP6 polypeptides of rotaviruses, or functional fragments thereof, in either monomeric or oligomeric forms, have the ability to bind peptides by virtue of an interaction between the peptide and binding site(s) on the VP6 polypeptide to form a VP6 - binding peptide complex. The present invention is also based on the discovery that VP6, in its monomeric or oligomeric forms, can be advantageously employed as an immunologic carrier to which molecules bearing an epitope of interest can be attached. Preferably, these epitope-bearing molecules can be attached to the VP6 polypeptide by use of a binding peptide. The above discoveries, therefore, provide for the production of compositions which can be used to stimulate an immune response to VP6, VP6 complex with an epitope-bearing molecule, as well as to the binding peptide if it is employed in the complex.

In one embodiment, the present invention is directed to a composition capable of raising an immunological response in a mammal to a selected epitope comprising an immunological carrier complex, said complex comprised of an epitope-bearing molecule expressing said selected epitope, said epitope-bearing molecule being selected from the group consisting of polypeptides, carbohydrates and nucleic acids; said epitope-bearing molecule being coupled to a carrier protein selected from the group consisting of monomers and oligomers of a polypeptide homologous to a rotavirus VP6 inner capsid protein amino acid sequence.

In several preferred embodiments of the above composition, the epitope-bearing molecule is a polypeptide, and the carrier protein is a VP6 inner capsid protein. In particularly preferred embodiments, the VP6 carrier protein is an oligomer formed into a particle, such as a tube or sphere. In a still further preferred embodiment, the epitope-bearing molecule is coupled to the carrier protein through a protein-protein interaction with a binding peptide specific for the VP6 binding site(s).

In another embodiment of the present invention, an improved vaccine composition is provided wherein the epitope of interest is on a polypeptide bound to a carrier protein, the improvement comprising using rotavirus VP6 inner capsid polypeptide as said carrier protein.

In other embodiments of the present invention, vaccination methods are provided, as well as specific binding peptides.

Further embodiments of the present invention will readily occur to those of ordinary skill in the art.


FIG. 1 shows the nucleotide sequence of a cloned copy of the rotavirus strain S-All gene 6 encoding the polypeptide VP6. The sense strand (corresponding to the mRNA) is shown, as well as the predicted amino acid sequence of VP6. Termination sites are underlined. See Estes et al. (1984) Nucleic Acids Res. 12:1875-1887.

FIG. 2 shows electron micrographs of particles produced from reassembled rotavirus VP6. Panel A shows particles from VP6 isolated from human strain WA rotavirus (subgroup 2), and panel B shows particles reassembled from recombinantly produced VP6 from a baculovirus expression system.

FIG. 3 is an electron micrograph of VP6 protein forming aggregated spherical particles in 0.01 M citrate buffer pH 4.0 and dialyzed to pH 5.0.

FIG. 4 is an electron micrograph of VP6 protein reassembled into various forms by dialyzing first to 0.01 M phosphate buffer, pH 6.0, and then to 0.01 M citrate buffer, pH 4.0, at C. The micrograph shows hexamers, small hexagonal lattices and tubes as well as sheets (arrows) consisting of a small-hole lattice. The arrow on the figure indicates the corresponding sheet on the original micrograph. Bars represent 100 nm.

FIG. 5 is a schematic representation of the assembly of VP6 monomer into various oligomeric structures.

FIG. 6 depicts dose-response curves to spherical VP6 carrier protein with and without various epitope-bearing molecules complexed therewith.

FIG. 7 depicts dose-response curves to spherical VP6 carriers complexed with or without various epitope-bearing molecules.

FIG. 8 depicts dose-response curves to spherical VP6 carrier protein with or without epitope-bearing molecules complexed therewith.

FIG. 9 depicts a dose-response curve for a spherical VP6 carrier protein complexed with an epitope-bearing molecule.


In describing the present invention, the following terms will be employed, and are intended to be the defined as indicated below.

An "immunological response" to an epitope of interest is the development in a mammal of either a cell-or antibody-mediated immune response to the epitope of interest. Usually, such a response consists of the mammal producing antibodies and/or cytotoxic T cells directed specifically to the epitope of interest.

An "immunological carrier complex" refers to a chemical complex between a immunologic carrier molecule, usually a protein, and a hapten or other epitope-bearing molecule. The epitope on the hapten or other epitope-bearing molecule for which an immunological response is desired is referred to as the "epitope of interest" or the "selected epitope".

An "epitope-bearing molecule" refers to a molecule within an immunological carrier complex which is bound to the carrier molecule and bears the epitope of interest. The epitope-bearing molecule of the present invention can include, but is not limited to, polypeptides, carbohydrates, nucleic acids, and lipids Further examples are given below.

A "rotavirus VP6 inner capsid protein" refers to the art-recognized major viral protein of the inner capsid from any species or strain within the genus Rotavirus. See, e.g., Kapikian et al., supra. Examples of rotavirus strains from which the VP6 protein can be isolated and employed in the present invention include, but are not limited to, Simian SA-11, human D rotavirus, bovine UK rotavirus, human Wa or W rotavirus, human DS-1 rotavirus, rhesus rotavirus, the "O" agent, bovine NCDV rotavirus, human K8 rotavirus, human KU rotavirus, human DB rotavirus, human S2 rotavirus, human KUN rotavirus, human 390 rotavirus, human P rotavirus, human M rotavirus, human Walk 57/14 rotavirus, human Mo rotavirus, human Ito rotavirus, human Nemoto rotavirus, human YO rotavirus, human McM2 rotavirus, rhesus monkey MMU18006 rotavirus, canine CU-1 rotavirus, feline Taka rotavirus, equine H-2 rotavirus, human St. Thomas No. 3 and No. 4 rotaviruses, human Hosokawa rotavirus, human Hochi rotavirus, porcine SB-2 rotavirus, porcine Gottfried rotavirus, porcine SB-1A rotavirus, porcine OSU rotavirus, equine H-1 rotavirus, chicken Ch.2 rotavirus, turkey Ty.1 rotavirus, and bovine C486 rotavirus. Thus, the present invention encompasses the use of VP6 from any rotavirus strain, whether from subgroup I, subgroup II, or any as yet unidentified subgroup, as well as from any of the serotypes 1-7, as well as any as yet unidentified serotypes. Furthermore, the present invention encompasses the use as an immunologic carrier of polypeptides having homologous amino acid sequences to rotavirus VP6 amino acid sequences which are unique to the class, or any member of the class, of VP6 polypeptides. Such unique sequences of VP6 proteins are referred to as a "rotavirus VP6 inner capsid protein amino acid sequence".

"Oligomers" refer to multimeric forms of, for example, VP6 polypeptides. Usually, such VP6 oligomers are trimers formed by intermolecular disulfide bridging between VP6 monomers. See, e.g., FIG. 5.

The binding of an epitope-bearing molecule to a VP6 carrier protein through "protein-protein interaction(s)" refers to the type of chemical binding, both covalent and non-covalent, between a binding peptide region of the epitope-binding molecule and the VP6 carrier molecule. The exact nature of this binding is not understood. It is characterized, however, as the binding phenomenon observed when a peptide, having a Cys and another charged amino acid (e.g., Arg) in a structural relationship to each other analogous to that shown in peptide A or B (below), .binds to. VP6 binding sites on the carrier molecule through mere mixing of VP6 carrier protein and molecules containing the binding peptide region. It is believed that this protein-protein interaction is a combination of a disulfide bridge involving the Cys, and a non-covalent interaction involving the charged amino acid, but applicants do not wish to be bound by this theory.

A "binding peptide" refers to amino acid sequences which have the ability to bind through a protein-protein interaction with a VP6 polypeptide. These binding peptides are discussed in more detail below.

A composition "free of rotavirus virions" refers to a composition which does not contain intact virus particles, although it may contain particles formed from VP6 complexed to other molecules.

A "vaccine composition", according to the present invention, is an otherwise conventional vaccine formulation employing either VP6 polypeptides alone or in an immunological carrier complex as the active ingredient. The preparation of vaccines containing the above active ingredients is well understood in the art. Typically, vaccines are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injection may also be prepared. The preparation may also be emulsified or the active ingredient encapsulated in liposomes. The active immunogenic ingredient is often mixed with excipients which are pharmaceutically acceptable and compatible with the active ingredient. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol, or the like, and combinations thereof. In addition, if desired, the vaccine may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, or adjuvants which enhance the effectiveness of the vaccine. The vaccines are conventionally administered parenterally, by injection, for example, either subcutaneously or intramuscularly. Injectable vaccine formulations will contain an effective amount of the active ingredient, the exact amount being readily determined by one skilled in the art. The active ingredient can range from about 1% to about 95% (w/w) of the injectable composition, or even higher or lower if appropriate.

Additional vaccine formulations which are suitable for other modes of administration include suppositories and, in some cases, oral formulation. For suppositories, the vaccine composition will include traditional binders and carriers, such as, polyalkaline glycols, or triglycerides. Such suppositories may be formed from mixtures containing the active ingredient in the range of about 0.5% to about 10% (w/w), preferably about 1% to about 2%. Oral formulations include such normally employed excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium, stearate, sodium saccharin cellulose, magnesium carbonate, and the like. These oral vaccine compositions may be taken in the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations, or powders, and contain from about 10% to about 95% of the active ingredient, preferably about 25% to about 70%.

Furthermore, the VP6 proteins or immunological carrier complexes of the present invention may be formulated into vaccine compositions in either neutral or salt forms. Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the active polypeptides) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed from free carboxyl groups may also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.

The vaccine composition of the present invention may be administered in a manner compatible with the dosage formulation, and in such amounts as will be therapeutically effective and immunogenic. The quantity to be administered depends on the subject to be treated, the capacity of the subjects immune system to synthesize antibodies, and the degree of protection desired. Precise amounts of active ingredient desired to be administered depend on the judgment of the practitioner and are peculiar to each subject. The establishment of effective dosages for a particular formulation, however, are within the skill of the art through routine trials establishing dose-response curves.

The rotavirus genome consists of eleven segments of double-stranded RNA. These 11 genes encode for the production of at least six structural proteins of the virus. In complete virus particles, these six proteins occur in a double-shelled arrangement. There are three inner shell (capsid) proteins designated virus protein (VP) 1, 2, and 6. There are three outer capsid proteins, two of which are designated VP3 and VP7. The third outer capsid protein, which is encoded by genomic segment 10 or 11, has not yet been assigned a number. The molecular weights of these proteins are shown in Table 1.

TABLE 1 ______________________________________ Gene assignment and Molecular Weight of the Major Rotavirus Structural Proteins Genomic Protein Molecular Segment Designation Weight Location* ______________________________________ 1 VP1 110K inner 2 VP2 92K inner 4 VP3 84K outer 6 VP6 45K inner 8 triplet VP7 41K outer 9 10 or 11 ND 20K outer ______________________________________ *Designates location of the structural protein in the inner or outer capsid of complete rotavirus particles.

In different rotaviruses, the absolute order of the genomic segments does not always correspond to the same genes. For example, the electrophoretic order of segments 7, 8, and 9 changes among rotaviruses from different animal species. This is referred to as inversion or "flip-flopping" of genome segments. The gene triplet formed by segments 7, 8, and 9 codes for three polypeptides, the neutralization-specific major outer capsid glycoprotein identified as virus protein (VP) 7 and two nonstructural proteins which are not shown in the table. In rotavirus strains SA-11, W, and Wa, gene 9 codes for VP7. In rotavirus strain DS-1 and UK bovine rotavirus, however, gene 8 codes for VP7. There are discrepancies in the literature about the exact molecular weight of VP7, as well as of other rotavirus proteins. Several researchers have suggested that this is in part due to the many variations in methods used to: (1) separate the individual polypeptides, (2) prepare virus samples for electrophoresis, (3) detect polypeptides in polyacrylamide gels, and (4) detect various post-translational modifications of primary gene products. In addition, especially for bovine and human rotavirus, there are variations in the mobility of proteins derived from different isolates originating from the same species. The molecular weights shown in Table 1 are those reported by Sabara et al. (1985) J. Virol. 53:58-66.

As discussed above, VP6 is the most abundant of the inner capsid proteins, constituting about 80% by weight of the inner shell. Rotaviruses can be divided into two subgroups (I or II) based on an epitope on VP6 which can be identified using monoclonal antibodies. Most rotaviruses examined to date fall into one of the two subgroups; however, there is evidence that both subgroup epitopes can be located on a single VP6 molecules. For example, recently an equine rotavirus was identified as having both subgroup 1 and 2 epitopes on VP6. See, e.g., Hoshino et al. (1987) Virology 157:488-496. Therefore, it is not inconceivable that the subgrouping classification may be extended or modified as new isolates are identified and their genes sequenced. There are also at least 7 serology groups into which rotaviruses have been classified.

All VP6 molecules sequenced to date consist of 397 amino acids, although some variability in the molecular weight of the protein has been reported which may indicate a protein with more or less than this number of amino acids. Specifically, the reported molecular weight range for VP6 is 41-45K, thereby indicating an amino acid size range of 397-425. However, molecular weight variability does not necessarily reflect a difference in the number of amino acids but can be due to electrophoretic conditions used in characterization of the protein. Only by sequencing the gene coding for a particular VP6 can the number of amino acids be determined (See, e.g., FIG. 1) The amino acid homology between VP6s belonging to the two different subgroups is 80% or more, based on the VP6 genes sequenced to date.

Within rotavirus, monomeric units of VP6 exist in a variety of oligomeric forms. Trimeric units (molecular weight about 135K) occur in both the virus particle and in infected cells, with the intersubunit linkage consisting of non-covalent interactions. These trimeric units complex further by virtue of disulfide bridges into larger units which likely represent the ring-like structures observed using electron microscopy. By employing different sample buffers, these nucleocapsid oligomeric complexes can be visualized on polyacrylamide gels.

VP6 protein can be prepared by any of several methods. First, VP6 can be purified from in vitro-derived single-shelled virus particles by calcium chloride (CaCl.sub.2) or lithium chloride (LiCl) treatment by standard techniques. See, e.g., Almeida et al. (1979) J. Med. Virol. 4:269-277; Bican et al. (1982) J. Virol. 43:1113-1117; Gorziglia et al. (1985) J. Gen Virol. 66:1889-1900; Ready et al. (1987) Virology 157:189-198. Alternatively, VP6 can be produced by recombinant DNA techniques, which are fully explained in the literature. See, e.g., Maniatis, Fritsch & Sambrook, Molecular Cloning: A Laboratory Manual (1982); DNA Cloning, Volumes I and II (D.N. Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed. 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds. 1985); Transcription and Translation (B.D. Hames & S.J. Higgins eds. 1984); Animal Cell Culture (R.I. Freshney ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide to Molecular Cloning (1984).

DNA coding sequences encoding VP6 polypeptides can be derived from VP6 mRNA. See, e.g., Estes et al., supra; Both et al. (1984) J. Virol. 51:97-101; Cohen et al. (1984) Virology 138:178-182. Alternatively, a DNA sequence encoding VP6 can be prepared synthetically rather than cloned. The DNA sequence can be designed with the appropriate codons for a VP6 amino acid sequence. In general, one will select preferred codons for the intended host if the sequence will be used for expression. The complete sequence is assembled from overlapping oligonucleotides prepared by standard methods and assembled into a complete coding sequence See, e.g., Edge (1981) Nature 292:756; Nambair et al. (1984) Science 223:1299; Jay et al. (1984) J. Biol. Chem. 259:6311.

Once a coding sequence for VP6 has been prepared or isolated, it can be cloned into any suitable vector or replicon. Numerous cloning vectors are known to those of skill in the art, and the selection of an appropriate cloning vector is a matter of choice. Example of recombinant DNA vectors for cloning and host cells which they can transform include the bacteriophage lambda (E. coli), pBR322 (E. coli), pACYC177 (E. coli), pKT230 (gram-negative bacteria), pGV1106 (gram-negative bacteria), pLAFR1 (gram-negative bacteria), pME290 (non-E. coli gram-negative bacteria), pHV14 (E. coli and Bacillus subtilis), pBD9 (Bacillus), pIJ61 (Streptomyces), pUC6 (Streptomyces), YIp5 (Saccharomyces), YCp19 (Saccharomyces) and bovine papilloma virus (mammalian cells) See generally, DNA Cloning: Vols. I & II, supra; T. Maniatis et al., supra; B. Perbal, supra.

The coding sequence for VP6 can be placed under the control of a promoter, ribosome binding site (for bacterial expression) and, optionally, an operator (collectively referred to herein as "control" elements), so that the DNA sequence encoding VP6 is transcribed into RNA in the host cell transformed by a vector containing this expression construction. The coding sequence may or may not contain a signal peptide or leader sequence. In bacteria, for example, VP6 is preferably made by the expression of a coding sequence containing a leader sequence which is removed by the bacterial host in post-translational processing. See, e.g., U.S. Pat. Nos. 4,431,739; 4,425,437; 4,338,397.

An expression vector is constructed so that the VP6 coding sequence is located in the vector with the appropriate regulatory sequences, the positioning and orientation of the coding sequence with respect to the control sequences being such that the coding sequence is transcribed under the "control" of the control sequences (i.e., RNA polymerase which binds to the DNA molecule at the control sequences transcribes the coding sequence). The control sequences may be ligated to the coding sequence prior to insertion into a vector, such as the cloning vectors described above. Alternatively, the coding sequence can be cloned directly into an expression vector which already contains the control sequences and an appropriate restriction site.

A number of procaryotic expression vectors are known in the art. See, e.g., U.S. Pat. Nos. 4,440,859; 4,436,815; 4,431,740; 4,431,739; 4,428,941; 4,425,437; 4,418,149; 4,411,994; 4,366,246; 4,342,832; see also U.K. Patent Applications GB 2,121,054; GB 2,008,123; GB 2,007,675; and European Patent Application 103,395. Yeast expression vectors are also known in the art. See, e.g., U.S. Pat. Nos. 4,446,235; 4,443,539; 4,430,428; see also European Patent Applications 103,409; 100,561; 96,491.

Depending on the expression system and host selected, VP6 is produced by growing host cells transformed by an expression vector described above under conditions whereby the VP6 protein is expressed. The VP6 protein is then isolated from the host cells and purified. If the expression system secretes the VP6 into growth media, the protein can be purified directly from cell-free media. If the VP6 protein is not secreted, it is isolated from cell lysates. The selection of the appropriate growth conditions and recovery methods are within the skill of the art.

Purified VP6 protein exhibits structural polymorphism. Specifically m hexamers and small hexagonal lattices are present in many of the samples. Tubular particles form between about pH 5.0 and about pH 9.0, and are moderately stable to changes in temperature and ionic strength. The formation of these particles is fully reversible. Spherical particles reassembling single-shelled virus can be formed at about pH 4.0. A novel structure, in the form of sheets, composed of small-hole lattice, is formed in samples shifted from about pH 6.0 to about pH 4.0. These results demonstrate the importance of VP6 and of protein-protein interactions for rotavirus assembly.

Such protein-protein interactions are likely involved in the observed phenomenon that certain peptides can bind to VP6 in its monomeric form or to various oligomeric structures formed from VP6 monomers, such as in vitro assembled tubes and spheres. The attachment is mediated by a specific binding site(s) within VP6. The structures which result from this binding, i.e., VP6 with a bound peptide, shall be referred to as VP6 binding peptide complexes. They can function as carriers to which other molecules bearing an epitope of interest (e.g., haptens) can be attached. By definition, therefore, VP6 bound to another molecule by virtue of a specific amino acid sequence (binding peptide), which occurs naturally or has been tailored onto the epitope-bearing molecule, can be defined as an immunologic carrier for such a molecule.

Many molecules are known in the art that bear an epitope and which can be useful when attached to a carrier. Examples of the classes of such molecules, usually macromolecules, are polypeptides, carbohydrates, and nucleic acids. Proteins, glycoproteins, and peptides can include cytokines, hormones, glucagon, insulin-like growth factors, growth hormone, thyroid stimulating hormone, prolactin, inhibin, secretin, neurotensin, cholecystokinin or fragments thereof, calcitonin, somatostatin, thymic hormones, neurotransmitters and blockers, peptide-releasing factors (e.g., enkephalins), growth hormone releasing factor, as well as antigenic fragments of proteins, such as calmodulin, E. coli heat stable and heat labile enterotoxin, cholera toxin; and enzymes, such as protein kinase of Rouse sarcoma virus. Additional polypeptides include steroid hormones, such as testosterone, estradiol, aldosterone, endrostenedione, or fragments thereof. Examples of nucleotides include polynucleotide fragments, restrictions enzyme sites, and cyclic nucleotides (e.g., cyclic adenosine monophosphate). Examples of carbohydrates and carbohydrate complexes include bacterial capsules or exopolysaccharides (e.g., from Hemophilus influenzae B), bacterial lipid A associated core antigens (e.g., from Pseudomonas species), blood group antigens (e.g., the ABO antigens), and glycolipids. Examples of lipids include fatty acids, glycerol derivatives, prostaglandins (e g , prostaglandin E.sub.2), and lipopeptides (e.g., leukoteiene B.sub.4) Molecules of interest can also include alkaloids, such as vindoline, serpentine, catharanthine, as well as vitamins containing --OH, NH, SH, CHO, or COOH functional groups.

In order to attach molecules to VP6 carriers, one may employ conventional chemical coupling techniques. A particular advantage of the VP6-binding peptide complex as a carrier, however, is that this system facilitates the attachment of molecules with minimal manipulation. For example, a synthetic peptide corresponding to an antigenic or immunogenic region of a particular infectious agent (the epitope of interest) can be chemically synthesized in such a way that it also contains the amino acid sequence (binding peptide) necessary to link it to VP6. This can be done without altering the antigenicity of the region to which immune responses are sought and may enhance the immunogenicity of this region. The antigenic region can also be produced via recombinant DNA technology, as describe above, in which case the nucleotide sequence corresponding to the binding peptide can be added so that the resulting product is a combination (fusion protein) of the antigenic region and the binding peptide. Attachment of the molecule to the VP6 carrier is then simply achieved by mixing the two substances without additional manipulation.

Several peptides have been found or designed that bind to VP6. The amino acid sequences for two are: (1) Peptide A (22 amino acids) Cys-Asp-Gly-Lys-Tyr-Phe-Ala-Tyr-Lys-Val-Glu-Thr-Ile-Leu-Lys-Arg-Phe-His-Se r-Met-Tyr-Gly, and (2) Peptide B (25 amino acids) Cys-Asn-Ile-Ala-Pro-Ala-Ser-Ile-Val-Ser-Arg-Asn-Ile-Val-Tyr-Thr-Arg-Ala-Gl n-Pro-Asn-Gln-Asp-Ile-Ala.

Both peptides A and B occur naturally as portions of virus protein 3 (VP3) of rotaviruses and are sensitive to trypsin. Cleavage of the peptides by trypsin prevents them from binding to VP6. It is clear that both of the sequences which are given herein are by way of example only, and that other compositions related to binding sequences, or sequences in which limited conservative amino acid changes are introduced, can also be used. Indeed, as described below, additional binding peptides can be designed by those of skill in the art in light of the present disclosure. For example, variant peptides derived from peptide B were further investigated in order to delineate the features of the peptide which are important for binding to VP6. The features relate to the spatial arrangement of a cysteine and arginine residue, and the three-dimensional conformation of a peptide which allows it to bind to VP6. Therefore, any peptide which exhibits these characteristics can be considered as a binding peptide.

Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.


1. Production of VP6

A. Isolation of Native VP6

Bovine rotavirus isolate C486 was propagated and purified as previously described. Sabara et al. (1986) J. Gen. Virol. 68:123-133. Briefly, virus was grown in confluent African monkey kidney cells (MA-104) in the absence of fetal bovine serum and in the presence of 10 ug trypsin/ml. Virus was purified by differential centrifugation and pelleted for 2 hours at 100,000 xg through a 40% sucrose cushion. After resuspension in water, virus was stored at

Nucleocapsid protein was isolated by successive degradation of purified virus with EDTA and either CaCl.sub.2 or LiCl, as follows. Outer capsid proteins were removed by incubating virus (3 mg/ml) in 50 mM EDTA-0.01 M Tris-HCl pH 7.4 at for 30 minutes. Subviral particles were recovered by ultracentrifugation (100,000 xg, 2-3 hrs, and resuspended in 0.01 M Tris-HCl pH 7.4 or 0.01 M sodium borate pH 9.0. They were then treated with either 1.5 M CaCl.sub.2 - 0.01 M Tris-HCl pH 7.4 at for 20-30 minutes or frozen in 2 M LiCl - 0.01 M sodium borate pH 9.0 at for 4 days. Cores and undegraded particles were separated from solubilized protein by ultracentrifugation. EDTA and salts were removed by extensive dialysis at against 0.01 M Tris-HCl pH 7.4, unless otherwise indicated. The purity of the samples was examined by polyacrylamide gel electrophoresis (PAGE) Laemmli (1970 Nature 227:680-685.

B. Recombinant VP6

To produce the recombinant VP6, gene 6 of bovine rotavirus C486 was first cloned in the Pstl site of pBR322. The resulting clone was digested with AhaIII and HpaIII and subcloned into the Sma I site of pAC373. After transfection into Escherichia coli, plasmids in recombinant ampicillin resistant colonies were screened by restriction enzyme analysis for inserts in the correct transcriptional orientation. To transfer gene 6 cDNA from the pAC373 vector to the Autographa californica nuclear polyhedrosis virus (AcNPV) DNA, Spodoptera frugiperda cells were cotransfected with wild-type AcNPV DNA using the calcium phosphate precipitation procedure as previously described. Smith et al. (1983) J. Virol. 46:584-593. Following incubation at C. for 4 hrs, the medium was removed and the cells observed with an inverted microscope for signs of infection. The extracellular virus was harvested at 5 days post-infection and plaqued on Spodoptera frugiperda cell monolayers. Recombinants were selected by identifying occlusion negative plaques with an inverted microscope. Positive plaques were further grown in microtiter dishes and nucleic acid dot blots on infected cells in these dishes were performed to verify the presence of gene 6. Plaque purification of positive supernatants from microtiter wells was performed and the virus from these plaques was used to propagate virus stocks.

To isolate VP6 from infected cells, the cells were first lysed with a buffer containing 1% NP40, 0.137 M NaCl, 1 mM CaCl.sub.2, 0.5 mM MgCl.sub.2 and 0.1 mg/ml aprotinin. The lysate was then dialyzed in 0.01 M citrate buffer pH 4.0 for 48 hrs during which time a precipitate which represented reassembled VP6 formed in the dialysis bag. The precipitate was then collected by centrifugation, then treated with 0.05 M EDTA pH 5.0 for 1 hour and recentrifuged. The resulting pellet contained purified VP6 reassembled spheres.

Rotavirus C486 is publicly available from the American Type Culture Collection (ATCC), 12301 Parklawn Dr., Rockville, MD 20852, USA, where it was deposited under Accession No. VR-917 on 15 April 1981. The pAC373 vector containing the rotavirus gene 6 cDNA was designated pAC373BRV6 and deposited with the ATCC on 31 August 1987 under Accession No. 40362, where it will be maintained under the terms of the Budapest Treaty.

2. Binding Peptides

Seven different synthetic peptides were tested for the ability to bind VP6. The primary structure of the peptides was as follows:

Peptide A: C-D-G-K-Y-F-A-Y-K-V-E-T-I-L-K-R-F-H-S-M-Y-G

Peptide B: C-N-I-A-P-A-S-I-V-S-R-N-I-V-Y-T-R-A-Q-P-N-Q-D-I-A

Peptide C: Y-Q-Q-T-D-E-A-N-K

Peptide D: D-E-A-N-K-K-L-G-P-R-E-N-V-A

Peptide E: R-N-C-K-K-L-G-P-R-E-N-V-A

Peptide F: R-N-C-K-K-L-G-P-R-M-M-R-I-N-W-K-K-W-W-Q-V

Peptide G: T-N-G-N-E-F-Q-T-G-G-I-G-N-L-P-I-R-N-W-N

The various peptides were reacted for 30 minutes at C. with 2.0 ug of purified VP6 from bovine rotavirus strain C486. Binding was then tested by gel electrophoresis: Two of these synthetic peptides (peptides A and B) bound to VP6 protein in the gel. A "laddering" effect was seen at locations corresponding to the 45K (molecular weight of VP6 monomer), 90K (molecular weight of VP6 dimer) and 135K (molecular weight of VP6 trimer) regions. Additional support for the binding of the two peptides to the various forms of VP6 was provided by the fact that the molecular weight increments in each ladder corresponded to the molecular weights of the synthetic peptide monomers. Definitive proof that the peptide bound to the VP6 protein was demonstrated by the fact that a ladder was detected at both the 45 K and 90K regions with antisera produced against the synthetic peptides.

In order to further delineate the features of the binding peptide required for binding to VP6, several variant peptides derived from peptide B (also referred to as 84 TS) were synthesized and tested for their ability to bind to VP6. A list of the variant peptides along with their amino acid sequence and their binding ability is shown in Table 2, below.

TABLE 2 __________________________________________________________________________ VARIANT PEPTIDES DERIVED FROM PEPTIDE B (84TS) __________________________________________________________________________ NAME OF PEPTIDE AMINO ACID Information displayed is queried directly from the U.S. Patent OfficeInformation displayed is queried directly from the U.S. Patent OfficeInformation displayed is queried directly from the U.S. Patent OfficeInformation displayed is queried directly from the U.S. Patent Office